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Abstract: This paper presents a predictive control scheme
for mobile robots that possess complexity, non-linearity and
uncertainty. A multi-layer back-propagation neural network
is employed as a model for nonlinear dynamics of the robot.
The control variables are produced by optimizing the
performance index on-line using the steepest gradient decent
algorithm. The neural network is constructed by the wavelet
orthogonal decomposition to form a wavelet neural network
that can overcome the problems caused by local minima of
optimization. The wavelet network is also helpful to
determine the number of the hidden nodes and the initial
value of weights. The sparse train data in our path tracking
case can reduce the effect of the “curse of dimensionality”
on the network size in high dimensional function learning
caused by the orthogonal wavelet base function.
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I. INTRODUCTION

The difficulties encountered in designing controls for
many dynamic systems such as robotic systems can be
broadly classified under three headings: 1) complexity, 2)
non-linearity, and 3) uncertainty. Generalized Predictive
Control (GPC) proposed by D.W. Clarke in 1987 [2] has
been an effective tool for this purpose, playing a very
important role in the control areas. As we know, most
GPC control applications are based on the linear models
of dynamic systems to predict the output over a certain
horizon, and to evaluate future sequences of control
signals in order to minimize a cost index that takes
account of the future output prediction errors over a
reference trajectory, as well as control efforts. However,
when the systems are non-linear and are operated over a
large dynamic range, the use of linear models become
impractical, and the identification of non-linear models
for control becomes absolutely necessary.

Neural networks have become an attractive tool to model
the complex non-linear systems due to its inherent ability
to approximate arbitrary continuous functions. During the
1980’s and the early 1990’s, conclusive proofs were
given by numerous authors that feed-forward neural
networks with one hidden layer are capable of
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approximating any continuous function on a compact set
in a very precise and satisfactory sense [5]. There were
some researchers who have successful applied the feed-
forward neural networks as the model predictors to GPC
[11(8]1[91[10][12]. In their research work, the control
problems of GPC were changed into the non-linear
optimization problems with the minimization of the cost
index, but suffer from undesirable local minima and slow
convergence of the error surface for back-propagation
training algorithm and non-linear optimization. Other
algorithms such as random search techniques and genetic
algorithms can be used to overcome the local minima
caused by the gradient ascent rule [4][7]. But the
computational cost of these algorithms will degrade the
performance of real-time control systems. Moreover, the
implementation of multiple feed-forward neural networks
suffers from the lack of efficient constructive approaches,
both for determining the parameters of neurons and for
choosing network structures.

Recently the wavelet decomposition emerges as a new
powerful tool for function approximation in a manner that
readily reveals properties of the arbitrary L2 function
(energy-finite and continuous or discontinuous)
[3][6][11]. Combining wavelets and neural networks can
result in a wavelet neural network with efficient
constructive approach [6][14][15]. Some application
results in different areas have shown that the wavelet
neural networks can approximate arbitrary functions
belonging to L? space, specially with the evidence results
for energy-finite and discontinuous function compared
with the other neural networks [8]. The wavelet neural
networks can further result in a convex cost index to
which simple iterative solutions such as gradient descent
rules are justifiable and are not in danger of being trapped
in local minima when choosing the orthogonal wavelets
as the activation functions in the nodes [13].

Motion control of mobile robots is a typical nonlinear
tracking control issue and have been discussed with
different control schemes such as PI, GPC based EKF
model [16][17]. In this paper, we will implement a GPC
controller for motion control with the neural network



model based on the orthogonal wavelets. In section II, a
motion control model is presented for a car-like mobile
robot. The wavelet neural network for motion dynamics
modeling is shown in section III. Section IV provides
Generalized Predictive Control (GPC) scheme based on
neural networks. The simulation results are given in
section V. Finally section VI presents a brief conclusion.

II. MOTION DYNAMICS FOR A CAR-LIKE MOBILE
ROBOTS

The robot used in this research is a car-like mobile robot
with four pneumatic tyre wheels. Two front wheels serve
for steering and two rear wheels serve for tracking, as
shown in figure 1. The robot has a modular structure such
that it can be readily extended and easily configured to
allow the use of a range of sensor modules or actuator
modules. Two 500 count/revolution rotary encoders are
fixed onto two motor shafts for servo control by a PID
motion controller. Another two 500 count/revolution
rotary encoders have been connected to the rear axes near
the rear wheels using 3:1 ratio pulley and belts. The
reason we use these two extra encoders is to compensate
for the position errors caused by inaccuracy of the
steering angle. The robot has a weight of 100 Kg and a
maximum speed 1 m/s. The sensors equipped include
optical encoders, a sonar array, a laser scanner, an infra-
red proximity, and a stereo head. As a preliminary step,
we currently use optical encoders and a rotating laser
scanner to implement the navigation task.
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Figure 1 the global frame for motion tracking

The motion control system consists of two main feedback
loops. The inner loop is a 2-axis motion controller to
maintain stable speed and steering servo control, based
on data from encoders. In contrast, the outer loop is a
position control loop to guide the robot to follow the
planned trajectory accordingly, relied on position

estimated from an Extended Kalman Filter (EKF) [17]. It
compensates for any errors caused by disturbance from
floor and non-perfected actuators. A path generator is
used to produce a continuous curvature trajectory for the
robot to travel.

The position (x(k), y(k)) and orientation 8(k) (pose) of
the robot can be expressed as the state x(k) in a global
frame shown in figure 1. We have the equation for motion
dynamics as follows:

x(k+1)
x(k+1)=| y(k+1)
Ok +1)
x(k)+ v(k)T cos(B(k))cos(a(k))
=| y(k) +v(k)T sin(@(k)) cos(a(k)) |+ w(k)
9(k) + v(k)T sin(a(k))/ H

ey

where u(k) = [v(k),a(k)]T is the control variables for
motion tracking, w(k)is Gaussian noise with zero mean

value, and T is the sample period. Currently the PI
control and GPC control are employed for motion
tracking based on EKF estimation for x(k) [16][17].

III. WAVELET NEURAL NETWORK MODELING OF
MOTION DYNAMICS

In multi-resolution analysis, for the square integrable
function space L2(R), there exists a nested chain of
closed subspaces:

Plc-cvicvycvicv, c-c IA(R)
such that

2
NV,={0} uV,=L(R
mezm(}melm (R)

where V,, is the subspace spanned by the dilation and
translation of a scaling function ¢(r) :

Pma® =2""2p2"1~n)

An orthogonal complement space W,, is existed for each
of v,, in V,,,; and they meet:

Vm+1 = Vm ewmvvml-wm

So we have
[*(R)=0W,,
m
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where W,, is the subspace spanned by orthogonal wavelet
basis  W,,, (1) =2"2y(2™1-n). Two schemes for

decomposing a I*(R) function f(#) canbe presented as:
posing

FO=Y Y W ® @)
and ‘
f(t) = E(f’(DM,n)(oM,n ®+ Z(fvu/mn )Wm,n ® (3)
n m>M ,n

What is more important for the function decomposition is
that for sufficiently large M, any f(r)e L*(R)can be
approximated arbitrarily closely in W, [18]. That is for
any £€>0

<&

f(t)_2<f’(pM,n>(pM,n(t)

The approximation by the truncated wavelet

decomposition can be expressed as:

FO=Y(f Onnrn®= Y Colya® @

n

It means some fine components (high frequency) that
belong to wavelet space W, for the function are

neglected and coarse components (low frequency) that
belong to scaling space V,, are preserved to approximate
the originate function under M scale. This expression has
similar structure for a 3-layer neural network as shown in
figure 2. The number of hidden nodes is decided by
wavelet translation n that depends on the support set of
(1) . Here we can assume a positive integer N to form a
range [-N, N] that can cover the support set of f(r) . For
the multiple dimension case, the scaling functions or
wavelets are generated by the tensor products of one
dimensional scaling functions or wavelets.

Figure 2 The wavelet network where C, = ( f.0 M,,,)

The proposed wavelet network with inputs and outputs
for motion dynamics stated in the section 1 is shown in
figure 3. This is an one-step-ahead predictive model. The
function @, in the hidden layer is a multidimensional

scaling function.

Other network parameters are:
¢ the number of input p=5, Input vector:
T

z(k - 1) ={v(k = 1),a(k - 1), x(k - 1), y(k —-1),8(k -1)]" .
o the number of output g=3, Output vector:

x(k) = [x(k), y(k), 001" .
e the number of the hidden nodes r=2N+1.
o the weight matrix from input to hidden layer is W'
o the weight matrix from input to hidden layer is W*

The network output vector is

x(k) = W*dW 'z(k - 1)) ®)
where ®=[p,, 0,17 . The weight matrix W is
invariable during training cycle.

M M

wh=] ¢ &+ 6)
M oM
(ZN+1)X5

From wavelet decomposition, initial values for weight
matrix W’ are generated by (4):

C-~n Cixvn - Ciy
W20 =|Con Caponer - Con @

c .
Cnv Cina CaN Lansyy

The weight matrix can be updated by the steepest
gradient decent algorithm.

W2(k)=W?(k -1) - pde” (8)

where e =[x, (k-1)—x(k-1)], and p is the update rate.

Figure 3 Wavelet network for motion dynamics
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IV. GPC CONTROL SCHEME BASED ON NEURAL
NETWORK

The equation (5) of the network output presented in
previous section can be rewritten in the state space form
as follows:

(x| A=)
x(k) ={ y(k) |=| fo(2(k=1)
0(k)] | f3(z(k-1)

= Flz(k - )] = F[x(k - 1),uk - 1)]

®

where x(k) = [x(k), y(k),0(k)]" and u(k) = [v(k),a(k)] .

The cost index of the generalized predictive control for
motion tracking is

min J (X(k),u(k))
u(k)

The basic idea of GPC is that the current control
variables are chosen to minimize the cost index over
several steps in the future so that the path tracking of the
robot is smooth and stable. Therefore, the cost index can
be expressed as

N N,
1 2 , TR 2 o
J=z [xa &k +0) = xk + i) * 2 Ai[[Auck +i-d)|* (10)

i=N,

where A(i) is a weighting matrix (2 by 2 positive definite
symmetric), penalizing the control effort. This cost index
reflects the desire to drive the next state x(k) of the robot
close to the desired state x,(k) generated by the path

planner without excessive expenditure of control effort.
The cost index is conditioned on data up to time k%,
assuming no future measurements are available. At each
sampling instant, an optimal control sequence is
calculated, but only the first one is applied to the system.
This process will be repeated at the next sampling instant
to form a receding horizon optimization procedure.

The other notations for equation are

e N, and N, are the minimum and maximum output
horizon respectively.
e N,is called the control horizon.
e Au(k) is a set of control increment.
Au(k) =u(k)—uk-1)
e d is the dead-time of system.

In general, N, is chosen to encompass all the responses

that are significantly affected by the current control. In
practice, it is more typically set to approximate the rise-

time of the system. N, is selected according to the dead-

time of the robot system, and is often taken as /. In our
tracking case, we choose

Ny=LN;=1d=1N, =K

In each control cycle k, we need to compute a control
increment matrix AUKk)AU(k) = [Au(k), -, Auck + K = 1)]T)
that has N vectors and choose the first one as actual
control increments for output. For the non-linear system
presented in (9), there are no analytic expressions
available. We have to implement the non-linear optimal
algorithm to find optimal solution of control variables
during the interval k and k+/ on line. The constrains on
the cost index (10) are a convex expression shown in (5)
because of the wavelet orthogonal decomposition.
Therefor, these K control increments can be calculated
recursively from the steepest gradient decent algorithm
during the interval between k and k+I without local
dilemma.

Let j be the iteration step for the nonlinear optimal
programming (j=0, ..., B) and B is the number of the

optimizing times, we have AU/ =—u8J {J according to the
gradient decent algorithm, where u is the optimizing

rate, and
81}, = -6X{,E’ +rAuU/ (11)

from (10), where

x/k+l)  xik+K) ax (k+L)
XU = du’ (k) ou’ (k) ou’ (k)

b= . \
ox’ (k+K) ox’(k+L)
du/(k+K-1) dul(k+K-1)

Ef;L(j,'(k+1)-xf(k+1) x{,'(k+L)—xf(k+L)]r
I" = diag[,y, -, hg]

So, iteration procedure for optimizing control increments
during one control cycle is:

AU/ = (I + ul) ™ udX{E/ 12)

After M iterations, an optimal control increment AU”(k)
is produced based on the current predictive states x(k +i)
(i=0, ..., L) at k that can be estimated from x(k-1) and N

optimal control increments AU*(k~1) at k-1. The main
computation during this optimizing procedure is the
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ox(k +1i)
ou(k +1)
matrix elements is presented according to the neural
network model (5) as:
;
a:z:“%n¢d

ox(k+i) _dfiak+i=1)

matrix (i=1, ..., L; I=0, ..., B-1). One of the

dak +1) doak +1) dalk +1) 13)
_D) ka2 =141
m=1
0 G#1+1)

V. SIMULATION RESULTS

In our simulation, Lemarie-Meyer’s wavelets are chosen
as the function approximation base since they are
orthogonal and posses good frequency and time
localization. The simple closed form expressions are
presented as shown in figure 4 [18]. The scaling function
expression is

_sinz(d- B)t+4pBtcosm(l+ B)t

14
m(1-(@4pn%) 1

o)

The dilation and translation of scaling function is
centered in n/2" . The ranges of network inputs and
output are transformed into [-1/2, 1/2]. So, the number of
hidden nodes can be determined roughly @M +1y? . For

different outputs, p is selected from (1). To choose a
proper M, a trial and error approach is used [18]:

To start from a small M.
To computed the mean square error (MSE).

e To increase M by 1 and repeat from first step if MSE
is bigger than a threshold.

The sparse data in our path motion case can further
decrease N, e.g. the steer angle is ranged in a smaller
region.
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Figure 4 The scaling function and its wavelet.

The training data are generated from the simulation of the
dynamics (1) where a path generator is employed for
different path generation [22]. We collect 514 pairs of
data for training the network that is a (4, 64, 3) neural
model with only those output layer weights need to train.

The results of network approximation and dynamic
output for a path starting from (19000, 12600, 0) to
(23000, 14600, 1/2) are shown in figure 5 where (a) is a
plot of x, (b) is a plot of x error, (c) is a plot of y, and (d)
is a plot of @ after 500 epoches training.
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Figure 5 The network approximation and dynamic output,
(a) x, (b) x error, (¢) ¥, and (d) 8. The unit of x, y, and x
error is mm and of 6 is radians. The number in the
horizontal axis is moving step.
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The simulation result for GPC motion control moving
along the path shown above is presented in figure 6. In
the simulation testing, we use L=10, K=I10, B=5.
Maximum error in x and y are 118mm and 48mm
respectively.
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Figure 6 Path Trajectory

V1. CONCLUSION

The control approach proposed in this paper has a
potential for controlling any dynamic system that usually
possesses complexity, non-linearity and uncertainty. The
benefits resulted from wavelet neural network will be the
convex cost index without local minima dilemma, the
appropriate initial values of weights, and a constructive
approach for the hidden layer of feed-forward neural
networks. Simulation results show the ability of
approximation of wavelet neural network to the nonlinear
dynamics and of adaptive tracking control of the wavelet
networks based GPC. Our future work will focus on the
further  exploitation for the wavelet network
approximation with few hidden nodes, training network
on line and adaptively selecting the hidden nodes.
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